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ABSTRACT
Irrespective of the intent, malicious or benign, behind the origin

of non-human traffic on sponsored advertising pages, failure to

detect such unwanted traffic results in deterioration of advertiser

performance metrics. Invalid (i.e., robotic) ad traffic is frequently

driven by IP addresses (or address ranges) that are exclusively

dedicated to VPNs, hosting or proxy services, Tor networks, as well

as by unknown or residential IPs that comprise of bot networks set

up to inflict maximum damage on a targeted group of advertisers.

Sophisticated invalid traffic distributes ad activity across millions of

IPs, switches back-and-forth between residential IPs with extremely

short-lived dwell time, and disguises behind genuine human traffic

to operate from compromised or mixed (sending both human and

bot traffic) IPs. In order to mitigate rapidly evolving bot IP traffic, we

propose an unsupervised model to generate robust IP embeddings

from a mixture of autoencoder network experts, which can be

segregated by basic heuristics for flagging entirely invalid IPs. Our

contribution further includes the development of a new proxy label

and a supervised network harnessing IP, search query and product

embeddings, for the purpose of detecting mixed IPs sourcing invalid

traffic only to specific sponsored search or product listing pages. Our

proposed two-component IP detection system enhances suspicious

IP traffic detection rate by 25% over a classical supervised model

baseline.
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1 INTRODUCTION
Sponsored advertising is a favored choice among advertisers to

offer their vast product catalogue to the enormous and immensely

diverse visitor population on popular e-commerce web pages and

apps. Sponsored Ads aka Sponsored Search aka Promoted Listings

refer to digital performance advertising programs that enable adver-

tisers to optimize on their ROIs (return on investment) by bidding
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on search keywords for prime real estate on these sites so that

they can increase their product visibility and sales. However, due

to the enormous revenue opportunity (millions to billions of US

dollars) generated by these large online marketplaces, sponsored

advertising is a fertile ground for fraudsters attempting to artifi-

cially inflate their own earnings. We define invalid traffic (IVT) or

robotic traffic on sponsored ad pages as ad impressions and clicks

that are fraudulent, involuntary or non-human, and are usually

generated by automated or coerced methods. Generally, the main

purpose to drive IVT is pernicious by nature, where robotic traf-

fic is routed by rogue sellers and advertisers to specifically target

their legitimate competition to deplete competitor budget, boost

own search rankings etc. However, some IVT may also be benign

in motive (nevertheless harmful for advertiser performance), like

undeclared crawlers and price grabbers that scrape page content

of online marketplaces to gather product information without any

direct intent to harm advertisers.

In recent times, sophisticated IVT has evolved to adopt a variety

of complex fraudmodus operandi to avoid detection by the in-house

or third party traffic quality (i.e., ad fraud detection) solutions em-

ployed by ad networks to prevent IVT. There are many illegitimate

online services that claim to boost advertiser ROIs and KPIs (key

performance indicators) on sponsored ads, which actually run bot

networks and drive IVT in the background in exchange for a fee.

Most of these bot operators route IVT through disreputable IP ad-

dress ranges associated with VPNs, hosting services, data centers,

online proxies etc., making invalid IP detection a key business prob-

lem for traffic quality. Since IPs get reassigned periodically, and

more genuine IP addresses enter into the fray to source suspicious

ad traffic, robotic IP lists need to updated dynamically according to

rotating IP behavioral patterns. One of the biggest challenges in bot

IP detection, however, is the lack of human and non-human/robot

labels for training and measuring the efficacy (precision/recall) of

models. We show that this problem can be circumvented to a large

extent by shifting to modern unsupervised and self-supervised mod-

eling approaches [1, 12, 18], or by training supervised models with

weak/partial supervision with incomplete proxy labels [4, 10, 14].

In this paper, we propose autoencoder networks [8] trained on

long-term IP behavioral features to generate unsupervised IP vec-

tor representations (embeddings) that are subsequently segregated

by a simple anomaly detection technique into human and bot IP

clusters. In order to remove training bias on under-represented

traffic slices and to further enhance detection, we build a Mixture

of Experts (MoE) model [6, 9, 16] where each expert is an individual
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autoencoder network. We extend the use of the MoE-autoencoder

model IP embeddings to build supervised networks for surgically

detecting IVT from IPs with mixed (simultaneously sending both

human and invalid) traffic. We justify the shortcomings of a fully

unsupervised approach to mixed IP detection, and develop a high

coverage, high quality proxy human label for supervised training.

Our work demonstrates that fine-tuning of unsupervised IP embed-

dings along with pre-trained embeddings of the advertised products

and search queries in a single combined network achieves excep-

tional IVT detection capability, as reinforced by excellent recall

metrics on derived bot signals in an online advertising application.

The paper is structured as follows. Section 2 discusses recent

related research in autoencoder networks and mixtures of deep

neural experts, with a focus on anomaly detection applications. We

describe IP embedding generation with autoencoder mixtures in

Section 3, and show downstream application for suspicious IP de-

tection both with unsupervised and supervised techniques. Section

4 demonstrates superlative performance on suspicious IP traffic

detection by ourmodeling framework in a sponsored advertising ap-

plication, while we conclude in Section 5 with future enhancements

in IP detection with this framework.

2 RELATEDWORK
There has been great research progress made on autoencoder [8,

12, 18] based deep neural networks in a variety of real-world appli-

cations that rely on unsupervised learning [15]. Anomaly detection

is a common use case with autoencoders, and is usually carried out

following one of two methods. The first method takes high recon-

struction error as an indicator of anomaly, while the second clusters

the network generated latent embeddings to segregate “normal”

observations from the anomalies. Sometimes multiple autoencoders

are used for anomaly detection by creating ensembles [3, 11], which

are trained end-to-end and their reconstruction errors are then com-

bined together to identify data anomalies. Modeling approaches

using the reconstruction error for anomaly detection strongly de-

pend on training only using “regular” (i.e., non-anomalous) observa-

tions to remain free of training bias creeping in from the anomalies

themselves [20].

Application of MoEs [9] on top of autoencoders has been ex-

plored by [17] and [19]. [17] uses mixture of experts in a variational

autoencoder setup where the experts are combined through a static

gating mechanism, with the objective to integrate different modal-

ity features efficiently rather than perform anomaly detection. On

the other hand, [19] stacks only two encoders and decoders to find

anomalies in images using reconstruction error. Another approach

to merge output from multiple autoencoders is to have separate

autoencoders for different clusters/buckets created within the data

[2, 13]. Interestingly, these approaches do not scale well when the

number of clusters is too large, and the highly parameterized net-

works can further overfit to the small volumes of data within each

cluster.

3 MODEL OVERVIEW
In this section, we describe our formulation for the mixture of

autoencoder experts to encode historical behavioral patterns into

unsupervised IP embeddings. IVT from mixed traffic IPs are notori-

ously hard to isolate, since the IPs themselves show reasonable de-

gree of “regular” behavior from the human portion. We surmise that

malicious IVT targets specific product listings and search queries

on sponsored advertising programs, and consequently there is a

strong interaction between IPs and product/search pages that are

targeted. We design another supervised network trained with a new

form of proxy labels, which learns from the encoder generated IP

embeddings as well as product ID and search query embeddings to

discover (IP, query) and (IP, product) tuple traffic pattern anomalies

due to the mixed IPs. This two-component modeling framework is

able to detect IVT from both fully robotic and mixed traffic IPs.

3.1 Mixture of experts IP encoder model
The IP encoder is an unsupervised model ingesting long-term ag-

gregated statistics of IP traffic to output a single representation

for each IP. The objective of this model is to encode historical IP

behavioral patterns into a vector using aggregate features, so the

autoencoder model [8] makes a sensible choice. Our goal is to com-

prehensively detect suspicious IPs and IP-focused bots, for which

we rely on proxy robotic signals (e.g. IPs with many ad clicks and

abnormally low purchase rates) for directional measurement of

progress. In a normal autoencoder there is no organic way to en-

courage greater recall on IP bots. So we modify the autoencoder

setup with MoE based training to encode this inductive bias into

the model architecture.

With Mixture of Experts (MoE) [9], the input IP features are

fed into multiple encoder networks. The autoencoder experts de-

cide on how the IP feature space gets mapped to an embedding

representation space. We apply the MoE method to take different

encoder outputs and to combine them probabilistically to form a

single embedding representation. We apply DSelect-𝑘 [7] as the

MoE gating function, which picks exactly 𝑘 of 𝑛 experts to produce

the final embedding. The sparsity in selection of experts encourages

better regularization and reduces computational overhead. We per-

form per-example gating wherein the features of the input sample

determine the weights for mixing the experts under consideration.

Figure 1: DSelect-K Autoencoder Mixture of Experts archi-
tecture

The output from the encoder MoE gate is passed through a de-

coder network in order to reconstruct the input features, which are

then evaluated with a reconstruction loss. Note that MoE is gener-

ally applied to the final model output, where output is combined
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and then passed to a loss function. In our design, we instead apply it

on the encoder outputs and have a single decoder. This formulation

has two advantages. First, the IP embeddings are used to discover

robotic IPs by clustering the computed embeddings and identifying

the irregular clusters. If we have separate decoders it is not guaran-

teed that the encoders will learn representations across different

experts in the same vector subspace for clustering. Having a single

decoder enforces the encoders to output representations relative

to the same decoder. Second, mixing the encoder embeddings to

create a single representation avoids the sub-optimal process of

manually assigning weights to the chosen encoder representations.

Our model architecture is visually presented in Figure 1, while the

optimization details are explained in Appendix A.1.

It follows as a natural extension of various real-world autoen-

coder applications to identify the suspicious IPs as anomalous ob-

servations that have high reconstruction errors. However, this ap-

proach does not perform well in the IVT detection space as high-

lighted in Section 4, because sophisticated robotic traffic try to

emulate human behavior and often do not manifest as data anom-

alies in the original or the latent feature space. In order to identify

robotic IPs, instead we cluster the IP embeddings using K-Means,

and then the robotic clusters are segregated by simple heuristics

(like unusually low purchase rate at a cluster level). All IPs from

the segregated bot clusters are collected to form the final list of

suspicious IPs. Further, the IP embeddings are shared for down-

stream modeling purposes and consumed in the mixed IP detection

problem as described in Section 3.2.

3.2 Mixed IP detection model
With only IP embeddings, it is unrealistic to detect IPs whose behav-

ior appears robotic only in certain component sessions. This can

happen when an IP is compromised or has many IP sub-networks,

few of which are used by authentic human traffic and others by

malicious IVT. Due to its pernicious nature, IVT generally has a

specific motive and a clear agenda to hit pre-determined search

keywords, ad campaigns or product listings. As a consequence,

mixed IP IVT can mostly be segregated as abnormalities on any

such (dimension, IP) tuples. Our IP encoder model in Section 3.1

does not require labels, as it generates unsupervised embeddings

and utilizes simple heuristics to sequester robotic IPs. However, this

approach is inadequate for mixed IP detection, as the combination

of (IP, search query) and (IP, product) tuples are combinatorially

large and result in an extremely high cardinality joint embedding

space. It is nearly impossible to cluster these joint embeddings at

scale, or to avoid overfitting to a large number of inadequately small

sized clusters. To address this limitation, we resort to supervised

learning with proxy labels as a fallback strategy, constructing a

new and high fidelity label in the process.

3.2.1 Labels for supervised training. Proxy labeling is the only

choice for supervision in this problem, since there is no known

process to get the ground truth for identifying bad or mixed IPs.

Traditionally, in sponsored advertising applications, any user action

(like ad click) that leads to a product purchase on the relevant

online marketplace is considered as a strong proxy label of human

activity. Our labeling logic is different, whichmarks all traffic events

from users with decent purchase rates (i.e., purchase to total traffic

ratio) in the past month as human, and the rest as non-human
1
.

The proposed labeling scheme has close to 7 times more human

label coverage as compared to the traditional label, and aids in

avoiding overfitting to sparse labels. Our goal is to generate mixed

IP deny-lists to segregate (IP, search query) or (IP, product) tuples,

thereby identifying the invalid portion of IP traffic targeting these ad

supply slices. To achieve this, we train a supervised model at traffic

event (sponsored ad click or impression) level with numerical and

categorical ad click/user features. Additionally, the model accepts

unsupervised IP embeddings from the IP encoder model described

in Section 3.1, and pre-trained embeddings for search queries and

product pages from another modeling application (out of scope for

discussion in this paper).

Figure 2: Mixed IP detection model neural architecture

3.2.2 Model architecture. As shown in Figure 2, the proposed archi-
tecture is a neural network composed of two neural sub-networks,

which are designed to focus on mixed IP bots with varying modus
operandi. Sub-network 1 and Sub-network 2 learn to identify (IP,

query) and (IP, product) targeted IVT attacks respectively. The aim

of this joint architecture is to achieve the best of both worlds, which

offers a couple of advantages. Firstly, it eliminates the need to build

separate models for individual problems, reducing redundant pro-

duction maintenance overhead. Secondly, by sharing some layers,

the network can focus on common aspects of the two IVT detec-

tion problems, improving accuracy and reducing overfitting. Figure

2 illustrates how the autoencoder IP model embeddings and pre-

trained query/product embeddings are passed to linear projection

layers, concatenated with one-hot encoded categorical features,

and passed through four fully-connected layers to jointly optimize

on binary cross-entropy loss. Our model generates pRobot (model)

scores between 0 and 1 for all IP traffic events, where 1 indicates a

strong robotic event prediction. pRobot scores are then aggregated

across (IP, query) and (IP, product) tuples to generate mixed IP

deny-lists, adding any tuple as robotic when average pRobot score

is over a certain threshold.

1
one-sided weak labeling where non-human indicates a mix of true valid and true

invalid; human label represents (almost) entirely true valid, aside from trivial mistakes
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4 EXPERIMENT RESULTS
In this section, we demonstrate quantitatively the usefulness of

the proposed two-component IP detection system in a real-world

application of suspicious IP traffic detection. All metrics for the

detection system have been reported for the sponsored advertis-

ing program of a major online marketplace in the US region. We

carried out extensive experiments with various modeling and hy-

perparameter options for each model, and listed results for the best

model/parameter choices.

We compare between the mixture of experts (MoE-AE), vanilla,

sparse [12] and denoising [18] autoencoders (AE) with respect to a

baseline Random Forest model. All the robotic IP detection models

(supervised or unsupervised) have the same input feature set. Each

training observation is a single IP with long-term (4 months) aggre-

gated ad traffic behavioral patterns to create a total of 33 IP features.

We calibrate each of the models to attain a fixed target value for a

proxy measure of false positive rate (FPR). Model architectural and

hyperparameter choice details are relegated to Appendix A.2.

4.1 Model results
We evaluate the results of our experiments on the basis of important

IVT detection metrics. These metrics include a) detection rate (DR)

depicting how much of invalid traffic an algorithm is catching, (b) a

proxy measure of false positive rate (FPR) that measures algorithm

precision in catching robotic traffic, and (c) a set of very confident

robotic coverage (RC) signals derived from simple, interpretable

heuristics according to domain expert knowledge. Improving on RC

signal coverage gives a directionally positive indicator of increasing

bot IP detection (unknown) true recall metric.

Model variant Click DR Impression DR
Vanilla-AE -0.85% 45.90%

Sparse-AE -0.37% 45.73%

Denoising-AE -0.44% 44.98%

MoE-AE -0.17% 45.97%
Table 1: Percentage improvement in detection rates over base-
line model for different IP encoder models

Table 1 shows relative improvement in bot IP detection rate of

the different autoencoder models over a baseline Random Forest

model trained with the traditional click-attributed purchase based

short-term labels called out in Section 3.2.1, given that each model is

calibrated at the same proxy FPR. The results indicate that the MoE-

AE has the best performance, having similar detection as Random

Forest in terms of click bot IP detection and vastly outperforming

in terms of crawler IP detection. One important point to mention

here is that the unsupervised IP models can be simultaneously ap-

plied for both click bot IP and crawler (impression bot) IP detection

by the downstream tasks, whereas the Random Forest model is

limited to only click bot IP detection due to lack of good training

labels in the impression data. Moreover, as briefly touched upon in

Section 3.1, reconstruction error based bot IP detection based on

anomalous latent space embeddings from the autoencoder models

performs rather poorly, resulting in a drop of 86% in Vanilla-AE

(reconstruction) click DR relative to the baseline model. This ob-

servation justifies the need for the clustering step, where groups of

similar IPs with human-like, regular IP features can get correctly

segregated as IVT.

Model variant Click DR
Mixed IP: Proposed 1.051𝒙%

Mixed IP: ml-BERT query embeddings 1.027𝑥%

Mixed IP: short-term labels 1.015𝑥%

Mixed IP: one-hot IP embeddings 𝑥%

Table 2: Detection metrics for different mixed IP model vari-
ants w.r.t. one of the models as baseline (data obfuscated for
confidentiality)

We performed ablation studies on the importance of different

components of the mixed IP detection network. We used search

query and product embeddings developed by our organization in the

proposed model, and also experimented with multi-lingual BERT

embedding (basemodel) [5] as an alternative source of query embed-

dings. We observe that our pre-trained query embeddings trained

and optimized on online marketplace data performs marginally

better than multi-lingual BERT as shown in Table 2. Experiments

on the usefulness of IP embeddings from the IP encoder model as

opposed to training IP embeddings from scratch (consider each IP

as a one-hot categorical feature) also show that there are relative

improvements with pre-trained embeddings. Our choice of new

labels with high coverage, which we refer to as long-term labels, for
supervised training is also justified by the higher detection rate at

same model FPR. The final model is thus built on long-term labels,
marketplace specific pre-trained query and product embeddings,

and the IP embeddings from the MoE-autoencoder model.

Metrics MoE-AE + Vanilla AE +
mixed IP mixed IP

Click DR 25.19% 24.59%

Impression DR 50.75% 50.67%

RC1 17.92% 17.60%

RC2 11.81% 11.19%

RC3 18.67% 18.82%
RC4 24.56% 24.56%

RC5 79.07% 79.36%
RC6 151.17% 150.53%

Table 3: Detection rate and robotic recall metrics percentage
improvement over the baseline model

For the final two-component IP detection system, we compare

systems with IP embeddings generated by any specific autoencoder

model and then the same embeddings fed to the mixed IP detection

model, for various model choices. For brevity, we only present the

relative improvement shown by our choice, the MoE-autoencoder

model system versus the vanilla autoencoder model system, as

compared to the baseline Random Forest IP detection model. The

detection rate (at the same FPR) for both systems are very close

(MoE-AE is only slightly higher), whereas the robot signal coverage

metrics show that the MoE-AE system is marginally superior with

higher Gains on more signals. Among the robot coverage signals

(RC), RC1-RC4 are click bot IP detection signals while RC5-RC6

are crawler bot IP detection signals (refer to Appendix A.3 for

specifics). We observe that the most significant IP detection metric

improvements are visible on the crawler signals.
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5 CONCLUSION AND FUTUREWORK
Invalid ad traffic is routinely directed through suspicious IP ranges

that are either entirely or partly taken over by bot operators for per-

petrating fraud. In this paper, we motivate the need for an advanced

IP detection model with the combined objective of mitigating en-

tire IP traffic if needed or surgically removing specific traffic slices

within an IP when the IP has mixed behavior. Our proposed Mix-

ture of Experts autoencoder model is able to fulfill this dual role

with overall IVT detection (on clicks and impressions) and robot

signal coverage far exceeding the performance of the supervised

model. Unsupervised IP embeddings from the MoE-AE model form

a crucial input component to a new mixed IP detection model that

also learns from pre-trained query and product ID embeddings to

successfully isolate robotic components within compromised or

shared IPs, as part of our proposed two-component IP detection

system. In the future, by adding a multitude of IP metadata features

such as ISP, ASN, IP domain, IP location, organization description

etc. spanning over many feature classes (numerical, tabular, nat-

ural language, embeddings) to the IP encoder, we wish to make

even bigger step-function advancements in robotic and mixed IP

detection.
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A APPENDIX
A.1 Optimization equations for IP encoder
Let the encoder input feature space be X and the gating feature

space be Z. Let’s denote the set of training samples of size 𝑁 by

D = {(𝑥𝑖 , 𝑧𝑖 ) ∈ X × Z}𝑁𝑖=1. Assume that we have𝑛 encoder models

with the encoder model 𝑖 represented by the function 𝐸𝑖 : X → R𝑑 ,
whereas the decoder model is represented by the function𝐷 : R𝑑 →
X and the gating function is represented by𝐺 : Z → R𝑛 . We train

using the reconstruction loss function ℓ : X ×X → R. Out of the 𝑛
experts we would like to select 𝑘 experts to contribute to the final

encoded representation. The encoder, decoder and gating functions

are neural networks parameterized by different weights.

Through our MoE setup we want to solve the following opti-

mization problem,

min

𝐸1,...𝐸𝑛,𝐷,𝐺

1

𝑁

∑︁
(𝑥,𝑧 ) ∈D

ℓ

(
𝑥, 𝐷

( 𝑛∑︁
𝑖=1

𝐸𝑖 (𝑥)𝐺 (𝑧)𝑖
))

s.t. ∀𝑗 ∈ [𝑁 ], ∥𝐺 (𝑧 𝑗 )∥0 ≤ 𝑘,

𝑛∑︁
𝑖=1

𝐺 (𝑧 𝑗 )𝑖 = 1, 𝐺 (𝑧 𝑗 ) ≥ 0

(1)

where ∥𝑤 ∥0 is the 𝐿0 norm of a real vector𝑤 , and the gating func-

tion 𝐺 is implemented as a DSelect-𝑘 layer here. Equation 1 is a

constrained optimization problem and using DSelect-𝑘 , a contin-

uously differentiable gating network, allows us to approximately

solve for it by optimizing the entire network with gradient descent.

Once the network is trained, the IP embedding of an input sample

(𝑥, 𝑧) is given by the output of the gated encoder models,

𝐼𝑃𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝑥, 𝑧) =
𝑛∑︁
𝑖=1

𝐸𝑖 (𝑥)𝐺 (𝑧)𝑖

A.2 Network training details

IP encoder model: All the encoders in the vanilla, MoE, denoising

and sparse autoencoders were set to be feed forward networks

with 2 hidden ReLU activated layers with dimensions [48, 24, 10]
for the MoE, denoising and vanilla autoencoders and [64, 48, 20]
for the sparse autoencoders. The decoders are mirror networks

of the encoders. MoE-AE has 4 encoders along with a DSelect-𝑘

layer with 𝑘 = 1. All autoencoders are optimized on MAE loss with

Adam optimizer. A total of five gating features related to counts

and ratios of ad clicks and ad conversions have been used in the

MoE experiments.

Mixed IP detection model: As described in Section 3.2 (and Figure

2), each sub-network in the mixed IP detection model has four

fully-connected layers consisting of 2048, 1024, 512 and 256 nodes
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respectively with ReLU activation function and L2 regularization.

The model is trained and calibrated on 1 week of Sponsored Ads

clicks data.

A.3 Robot coverage heuristic signals
In order to calculate recall on known bot traffic, we use the following

set of very confident heuristics in the form of robot coverage (RC)

signals.

• RC1 : Sessions with more than 20 times the average number

of ad clicks in a single hour

• RC2 : User Agents (UA) with 70 times lower than average

purchase rates

• RC3 : (IP, Query)-tuples with 70 times lower than average

purchase rates

• RC4 : (IP, Product ID)-tuples with 70 times lower than aver-

age purchase rates

• RC5 : User Agents with 40 times lower than average click-

through-rates and 35 times lower than average purchase

rates

• RC6 : Sessions with 80 times higher than average ad im-

pressions in a single hour and 4 times lower than average

click-through-rates
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